- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
McNeil, Brenden E. (2)
-
Atkins, Jeff W. (1)
-
Bester, Michelle S. (1)
-
Bond‐Lamberty, Ben (1)
-
Elmore, Andrew J (1)
-
Erazo, Dara A (1)
-
Fahey, Robert T (1)
-
Fahey, Robert T. (1)
-
Gallagher, Michael R. (1)
-
Gough, Christopher M. (1)
-
Haber, Lisa T. (1)
-
Hardiman, Brady S. (1)
-
Heimerl, Ty Z (1)
-
King, Christopher J (1)
-
LaRue, Elizabeth (1)
-
Maxwell, Aaron E. (1)
-
McNeil, Brenden E (1)
-
Nealey, Isaac (1)
-
Orwig, David A. (1)
-
Skowronski, Nicholas S. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The challenges inherent in field validation data, and real-world light detection and ranging (lidar) collections make it difficult to assess the best algorithms for using lidar to characterize forest stand volume. Here, we demonstrate the use of synthetic forest stands and simulated terrestrial laser scanning (TLS) for the purpose of evaluating which machine learning algorithms, scanning configurations, and feature spaces can best characterize forest stand volume. The random forest (RF) and support vector machine (SVM) algorithms generally outperformed k-nearest neighbor (kNN) for estimating plot-level vegetation volume regardless of the input feature space or number of scans. Also, the measures designed to characterize occlusion using spherical voxels generally provided higher predictive performance than measures that characterized the vertical distribution of returns using summary statistics by height bins. Given the difficulty of collecting a large number of scans to train models, and of collecting accurate and consistent field validation data, we argue that synthetic data offer an important means to parameterize models and determine appropriate sampling strategies.more » « less
-
McNeil, Brenden E; Fahey, Robert T; King, Christopher J; Erazo, Dara A; Heimerl, Ty Z; Elmore, Andrew J (, Frontiers in Ecology and the Environment)
-
Atkins, Jeff W.; Bond‐Lamberty, Ben; Fahey, Robert T.; Haber, Lisa T.; Stuart‐Haëntjens, Ellen; Hardiman, Brady S.; LaRue, Elizabeth; McNeil, Brenden E.; Orwig, David A.; Stovall, Atticus E.; et al (, Ecosphere)null (Ed.)
An official website of the United States government
